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Abstract

The visco-hyperelastic behavior of a filled rubberlike material has been studied experimentally by large deformation
cyclic uniaxial loadings, and an anisotropy induced by the Mullins effect has been demonstrated. By applying a general-
ized Maxwell model to a set of material directions, damage could be included in order to reproduce the stress softening
due to the Mullins effect. This induces also an anisotropic mechanical response, and the model compares favorably with
the experimental measures.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Despite a large number of publications in the last decade, the accurate prediction of the mechanical
behavior of rubberlike materials remains an open issue (Dorfmann and Ogden, 2004). These materials
are often used under cyclic conditions, where large deformation viscoelasticity coupled with damage is rel-
evant. Their mechanical behavior has been described first as hyperelastic, and several forms of strain energy
density have been defined so far, see for instance Rivlin and Saunders (1951), Hart-Smith (1966), Ogden
(1972), Lambert-Diani and Rey (1999) and Boyce and Arruda (2000). Later, the stress softening induced
by the first loading cycle, and known as the Mullins effect (Mullins and Tobin, 1947), has been included
in constitutive equations by adding damage. An isotropic damage parameter D has often been introduced
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in order to modify the strain energy density by the multiplicative factor 1 � D (Simo, 1987; Govindjee and
Simo, 1991; Miehe, 1995; Ogden and Roxburgh, 1999; Beatty and Krishnaswamy, 2000). In an alternative
approach based on macromolecular models, still assuming isotropy, Marckmann et al. (2002) have pro-
posed to account for damage by making the average length and volume fraction of the chains that support
stress depend on the loading history.

Early experimental results (Mullins, 1948; Harwood and Payne, 1966; Mullins, 1969) have demonstrated
the viscoelastic character of rubberlike materials. For instance, the uploading and unloading responses dif-
fer during cyclic loadings. Many visco-hyperelastic constitutive models with or without damage have been
proposed by Simo (1987), Lion (1998), Reese and Govindjee (1998), Bergström and Boyce (1998), Miehe
and Keck (2000), Huber and Tsakmakis (2000), Kaliske et al. (2001), Reese (2003) and Laiarinandrasana
et al. (2003), among others. In these papers, the material is always considered as isotropic, although it has
been reported for long that some anisotropy is induced by the Mullins effect (Mullins, 1948). This has been
taken into account in the limited context of hyperelasticity or viscoelasticity, by using suitable tensorial rep-
resentations (Holzapfel and Gasser, 2001; Horgan et al., 2004) or by combining damage and a model based
on a set of material directions (Pawelski, 2001). This has been applied to describe the initial anisotropy, as
may be found in calendered plates for instance, by Itskov and Aksel (2004), who used the tensorial ap-
proach, or by Diani et al. (2004), who used a set of material directions.

In this work, cyclic uniaxial tension tests have been performed in order to analyze the viscoelastic behav-
ior of a rubberlike material, with emphasis put on the anisotropy induced by the Mullins effect, as reported
in Section 2. Section 3 shows how the mechanical response of the material can be represented by combining
a generalized Maxwell scheme and a model using a set of damageable material directions. Here, damage
refers to the Mullins strain-induced stress softening and is introduced as an anisotropic extension of the
network alteration theory of Marckmann et al. (2002). Each material direction undergoes a softening that
depends on the largest stretch that it has ever been submitted to. This model is shown to be in agreement
with the second law of thermodynamics and is able to represent visco-hyperelasticity with stress softening
as well as initial and induced anisotropies. It is favorably compared with experimental data in Section 4.
2. Experimental observations

All the tests presented here were conducted on an Instron 4302 uniaxial testing machine operated in the
local strain control mode, where local strains were measured by video image analysis, at a low and constant
strain rate of 0.01 s�1. The material was a commercial EPDM (ethylene propylene diene) elastomer filled
with carbon black and processed in plates of 2 mm thickness. The specimens were 10 mm long and
4 mm wide, except in some cases that are explicitly specified in the text.

Fig. 1a shows the stress–strain response obtained under cyclic loading conditions. During this test, the
maximum strain is increased after each 10-cycle series. The material response at the first cycle of each series
differs significantly from the responses at the next cycles. This large difference is due to the Mullins effect,
which is a strain-induced stress softening phenomenon that has been extensively studied by Mullins and co-
workers (Mullins and Tobin, 1947; Mullins, 1948; Mullins, 1969). After the second cycle, the material soft-
ens gradually by fatigue. This effect has been shown to be non-negligible (Gentot et al., 2004) but, since the
present work focuses on the Mullins effect, it will not be studied here, and each series of cycles will be lim-
ited to a single loading–unloading–reloading sequence (Fig. 1b). A method for including fatigue softening
in the model will be suggested in Section 3.2. In order to evaluate the elastic part from the overall visco-
elastic response, a test has been performed, where loading periods and stress-relaxation periods were ap-
plied sequentially. It can be observed in Fig. 1c that the material response tends towards an equilibrium
state, which cannot be reached within laboratory time scale and is closer to the unloading curve than to
the loading curve.
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Fig. 1. Stress–strain behavior of a carbon black filled EPDM elastomer in uniaxial tension. (a) Ten cycles applied at 50%, 100%, 150%,
and 200% stretch. (b) Load–unload–reload sequences applied at the same stretch levels. (c) Stress relaxation applied at the same stretch
levels, during loading and unloading.
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The initial in-plane isotropy of the material has been checked by conducting uniaxial tension tests on
specimens that were cut from the plate with various orientations, which lead to indistinguishable responses.
In order to study the anisotropy induced by the Mullins effect, two identical large specimens (60 mm long
and 25 mm wide) were submitted to two cycles of 200% stretch in uniaxial tension along a direction referred



Fig. 2. The large and small samples used. The white painted dots are used by the video extensometer.
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to as �direction 1�. Then, a smaller specimen was cut from each of these preconditioned large samples, either
along direction 1 (sample 1) or along the orthogonal direction (sample 2), as illustrated in Fig. 2. Samples 1
and 2 were subsequently submitted to two cycles of 200% uniaxial tension. As a consequence, both small
samples had the same preconditioning, where the Mullins effect lead to the same stress softening, but they
were loaded along different material directions, which allows for checking if some anisotropy has been in-
duced by the preconditioning. One would expect a response of sample 1 (loaded the same way as in pre-
conditioning) similar to what had been observed on the large samples, and sample 2 (loaded
perpendicularily to preconditioning) may behave differently, depending on the magnitude of the anisotropy.

The stress vs. stretch (using a reference length measured on the virgin material) responses obtained with
the large sample and with the two small samples are shown in Fig. 3. Sample 1 shows a curve shape that is
similar to the one observed on the large sample at the second cycle. This shape is typical of a material where
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Fig. 3. Anisotropy induced by the Mullins effect: uniaxial stress–strain responses (load–unload–reload) of a carbon black filled EPDM
elastomer preliminarily submitted to a uniaxial tension (two cycles) along direction 1 and subsequently loaded either along direction 1
or along the perpendicular direction 2.
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the Mullins effect has been already saturated. The beginning of the curve for sample 1 differs from the sec-
ond cycle of the large specimen: it starts at a lower stretch and requires one cycle to reach the curve of the
large sample. This is due to some relaxation of the viscoelastic strains: after unloading the large sample,
there remains a stretch of about 31%, which is partially recovered during the 20 min that are required to
cut and prepare the small sample. When the latter is ready for testing, a residual stretch of 13% is measured.
It has been checked also that this residual stretch was still 12% after 48 h, which shows the viscous nature of
a part of the strain that remains after instantaneous elastic unloading of the material, most of which is
recovered after 20 min. The curve for sample 2 starts from a residual contraction, which is consistent with
the residual elongation in direction 1 and with the incompressibility of the material. During the first load,
sample 2 exhibits a shape curve that is similar to the one observed on the large sample at the first load,
which suggests that the Mullins effect is not saturated yet. Some softening has already been endured by
the material, though, since the first loading of sample 2 is below the response of the large sample. During
the second cycle of sample 2, no more Mullins effect is observed and the curve is similar to the second cycles
of the large sample and of sample 1, with some shift towards higher stretches. Samples 1 and 2 clearly show
different responses which illustrate the anisotropy induced by the Mullins effect.
3. Anisotropic visco-hyperelastic model including damage

3.1. General theory of incompressible visco-hyperelastic materials

The generalized Maxwell model that is shown in Fig. 4 is likely to represent the behavior of elastomers
correctly, since it tends gradually to an equilibrium elastic state (Fig. 1c) during a long relaxation test, for
instance. It is similar to other models that have been used previously to define isotropic visco-hyperelastic
constitutive equations for filled rubberlike materials (Holzapfel and Simo, 1996; Bergström and Boyce,
1998; Miehe and Keck, 2000; Kaliske et al., 2001; Reese, 2003), but here the responses of the hyperelastic
springs evolve with damage and include anisotropy in the three-dimensional generalization of the model.
The constitutive equations based on this rheological model are built in three steps. First, the general theory
of an incompressible visco-hyperelastic material is rapidly described. Then, the various components of the
B1

A

WB2

WB1

WA

B2

Bn
WBn ηBn

ηB2

ηB1

Fig. 4. The rheological model used. The springs are hyperelastic, and they are anisotropic and damageable in the three-dimensional
generalization.
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model are defined by using a set of material directions which allows for a globally anisotropic response.
Finally, a damage variable is introduced for each material direction in order to reproduce the stress soft-
ening associated with the Mullins effect.

The general theory of viscoelasticity at finite strains has been detailed very precisely by Reese and Gov-
indjee (1998), and it suffices to recall here the main equations. For instance, it is essential that the second
law of thermodynamics be satisfied, which leads to
1
2
S : _C� _W P 0; ð1Þ
where S denotes the second Piola–Kirchhoff stress, C is the right Cauchy–Green tensor, and W is the total
free energy. In the rheological model of Fig. 4, W is given by
W ¼WAðCÞ þ
X
k¼1;n

WBk ðC
Bk
e Þ; ð2Þ
where WA denotes the strain energy of the material at equilibrium state, and WBk is the strain energy of the
spring in branch Bk. As suggested by Sidoroff (1974), for instance, the total deformation gradient can be
decomposed as follows in branch Bk:
FBk ¼ FBk
e � FBk

v ; ð3Þ

where FBk

e and FBk
v are the deformation gradients associated with the spring and the dashpot, respectively.

Therefore, CBk
e ¼ ðF

Bk
e Þ

T � FBk
e is the elastic right Cauchy–Green tensor in branch Bk. By substitution of (2) in

(1), and after some derivations detailed in Reese and Govindjee (1998), one gets
S ¼ 2
oWA

oC
þ 2

X
k¼1;n

ðFBk
v Þ
�1 � oWBk

oCBk
e

� ðFBk
v Þ
�T and

X
k¼1;n

oWBk

oCBk
e

: CBk
e � L

Bk
v

� �
P 0. ð4Þ
The elastic part of the material response is given by Se ¼ 2 oWA
oC

, the viscous part is Sv = S � Se, and
LBk

v ¼ _F
Bk

v � ðFBk
v Þ
�1 is the velocity gradient associated with the viscous part of the deformation gradient

in branch Bk.
Rubberlike materials are quasi-incompressible, and strict incompressibility is usually assumed when

dealing with loading conditions such as uniaxial tension, pure shear or equibiaxial tension. Therefore,
the material will be considered as incompressible in the present work and, more specifically, incompressibil-
ity is assumed to apply to both the elastic and viscous components:
det FA
� �

¼ det Fð Þ ¼ 1 and det FBk
e

� �
¼ det FBk

v

� �
¼ 1 8k. ð5Þ
Hence, relations (4) become (Le Tallec et al., 1993):
S ¼ 2
oWA

oC
þ 2

X
k¼1;n

ðFBk
v Þ
�1 � oWBk

oCBk
e

� ðFBk
v Þ
�T � pC�1 and

X
k¼1;n

oWBk

oCBk
e

� qBk CBk
e

� ��1

 !
: CBk

e � LBk
v

� �
P 0; ð6Þ
where p and qBk are Lagrange multipliers. In order to get stresses, one needs to define the elastic deforma-
tion gradient FBk

e in each branch Bk in such a way that the inequality in (6) is satisfied. A sufficient condition
(among other possibilities) for this requirement is obtained by prescribing
LBk
v ¼

1

gBk
CBk

e �
oWBk

oCBk
e

� qBk I

 !
8k; ð7Þ
where I denotes the identity tensor, and where the viscosity gBk > 0 has been introduced to characterize the
dashpot in branch Bk. Since, according to (3), the velocity gradient L is related to LBk

v and LBk
e by
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L ¼ LBk
e þ FBk

e � LBk
v � ðFBk

e Þ
�1
; ð8Þ
the equation of evolution takes the following form:
L ¼ LBk
e þ

1

gBk
FBk

e � CBk
e �

oWBk

oCBk
e

� qBk I

 !
� ðFBk

e Þ
�1 8k. ð9Þ
It should be noted that Eqs. (6) and (9) do not restrict to isotropic behaviors, and this general theory is
applied below to an anisotropic set of material directions. Moreover, damage can be included easily as a
series of parameters Di (i = 1, . . . , 1), if the condition
� oW

oDi

_Di P 0 ð10Þ
applies for all i, since this ensures that the Clausius–Duhem inequality is still satisfied.

3.2. Application to a model based on damageable material directions

Hyperelastic laws for rubberlike materials based on sets of material directions have been proposed pre-
viously by Pawelski (2001) and Diani et al. (2004). In such models, which are able to account for anisot-
ropy, the hyperelastic strain energy density is approximated by summing contributions over a set of
material directions. A unit vector parallel to one of the m directions considered is denoted ui; it is defined
on the reference configuration, i.e., it does not vary when the material deforms. If a deformation gradient F

is applied, each direction is stretched with
ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFuiÞT � ðFuiÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui � C � ui
p

. ð11Þ
The total strain energy of the system is thus given by
W ¼
X

i

niwðki;NiÞ; ð12Þ
where ni is the volume fraction of molecular chains whose end-to-end vectors are parallel to ui, and w is an
elementary strain energy:
wðki;NiÞ ¼ N ibT b
kiffiffiffiffiffi
Ni
p þ ln

b
sinh b

� �� �
with b ¼L�1 kiffiffiffiffiffi

Ni
p
� �

; ð13Þ
denoting L�1 the inverse of the Langevin function. Actually, (13) is the elementary density of a non-Gauss-
ian macromolecular chain (Treloar, 1975), b denotes Boltzmann�s constant, and T is the absolute temper-
ature. Parameter Ni relates to the maximum possible extension along direction ui and equals the number of
links in a chain in the classical macromolecular context.

The strain energy densities WA and WBk of the previous section are now defined by using (12):
WAðGiA;NiA;CÞ ¼
X

i

niAwðkiA;NiAÞ; kiA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui � C � ui
p

;

WBk ðGiBk ;N iBk ;CBk
e Þ ¼

X
i

niBk wðkiBk
e ;NiBk Þ; kiBk

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui � CBk

e � ui

q
;

ð14Þ
where the parameters GiA = niAbTNiA and GiBk ¼ niBk bTN iBk have been introduced. Eqs. (13), (14), (6) and
(9) define a material that may be anisotropic, depending on the values of the parameters GiA, GiBk , NiA and
NiBk . Since it has been demonstrated in Section 2 that the loading history induces some anisotropy in an
initially isotropic material, a damage variable is now introduced along each direction, that will act on all
these parameters.
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In order to account for the strain-induced stress softening due to the Mullins effect, Marckmann et al.
(2002) have proposed to include damage in macromolecular models as an increase of the average chain
length with the average chain stretch. This model has been defined initially on the isotropic eight-chain
model of Arruda and Boyce (1993) and applied later to the isotropic full-network model by Diani and
Gilormini (in press). The physical interpretations of damage in the macromolecular network that are de-
tailed in Marckmann et al. (2002) suggest that the number of active chain links is constant, and therefore
the number of chains under stress decreases if the average chain length increases. This assumption is ex-
tended here to all the material directions considered, and to all the hyperelastic components of the rheolog-
ical model:
niAðtÞNiAðtÞ ¼ cst and niBk ðtÞN iBk ðtÞ ¼ cst 8k; 8i; 8t. ð15Þ

For each direction ui, the parameters NiA and NiBk are assumed to depend on the largest elastic stretch

values kiA
max and kiBk

max ever reached along this direction. Since no quantitative experimental observation of the
mean chain length before and after damage is available, an empirical form is proposed for this dependence:
NiA=NiA
0 ¼ aðkiA

max � 1Þ2 þ 1 with kiA
maxðtÞ ¼ max

s2½0;t�
kiAðsÞ; ð16Þ
where NiA
0 is the initial value of NiA, and a > 0 is a material damage parameter, with similar equations for

NiBk . This damage evolution law is proposed to fit the experimental data obtained on the elastomer consid-
ered in the present study, and it may be inadequate for other materials. It depends probably on the nature,
shape and amount of filler particles, in addition to the nature of the gum and the vulcanization process, but
this question is beyond the scope of this paper. While NiA and N iBk increase with kiA

max and kiBk
max, respectively,

the fractions of active chains niA and niBk decrease because of (15), but GiA and GiBk remain constant. Since
kiA

max and kiBk
max depend on ui, this provides an easy way of generating an anisotropic response of the material,

as compared to the tensorial approaches of Holzapfel and Gasser (2001) and of Horgan et al. (2004), which
are limited to specific anisotropies.

The introduction of the Mullins effect into the constitutive equations can now be performed by adding
kiA

max and kiBk
max as internal variables that will modify NiA and NiBk :
WðC;CBk
e ; k

iA
max; k

iBk
maxÞ with i 2 f1; . . . ;mg and k 2 f1; . . . ; ng. ð17Þ
There remains to verify that (10) is satisfied, where Di is replaced by kiA
max or kiBk

max. First, the evolution law

(16) ensures that _k
iA

max P 0, _k
iBk

max P 0, oNiA

okiA
max

P 0, and oNiBk

ok
iBk
max

P 0. Moreover, the definition of W given in (12)
gives
oW

oNiA ¼ �
kiAGiA

2NiA
ffiffiffiffiffiffiffi
NiA
p L�1 kiAffiffiffiffiffiffiffi

N iA
p
� �

; ð18Þ
with similar expressions for the Bk components. An elementary study of the inverse Langevin function
shows that oW

oNiA 6 0 and oW
oNiBk
6 0 as long as kiA

6

ffiffiffiffiffiffiffi
NiA
p

and kiBk
e 6

ffiffiffiffiffiffiffiffiffi
N iBk
p

, and consequently the Clausius–
Duhem inequality is satisfied.

It may be noted that Ni changes because of the Mullins effect only in the above theory, but fatigue may
also be accounted for by making Ni depend on some measure of the stretch history rather than merely on
the maximum stretch ever reached. If the material is isotropic initially, the number of initial parameters is
reduced since NiA

0 ¼ NA
0 , NiBk

0 ¼ N Bk
0 , GiA

0 ¼ GA
0 and GiBk

0 ¼ GBk
0 for all directions ui. The latter should be dis-

tributed as regularly as possible in order to account for isotropy, and the 16 directions defined by the 32
vertices (each vertex has an opposite) of the polyhedron shown in Fig. 5 are used, like in Pawelski
(2001). This polyhedron is obtained from a dodecahedron where an additional vertex has been added in
the direction of the center of each of the 12 pentagonal faces. Thus, each pentagonal face leads to five tri-
angular faces, and one finally gets 12 vertices where five edges join, and 20 vertices where six edges join. As



Fig. 5. Thirty two-vertex polyhedron where the 16 directions used are defined: six directions joining opposite five-edge vertices, and 10
directions joining opposite six-edge vertices.
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mentioned in Baz̆ant and Oh (1986), an average over these directions should use weights of 25
420

and 27
420

for
the six directions joining two opposite five-edge vertices and for the 10 directions joining two opposite six-
edge vertices, respectively. For checking how well isotropy is satisfied with this set of directions, uniaxial
tension tests and pure shear tests were simulated with randomly chosen orientations, which lead to a dis-
crepancy below 5%. This precision is considered as sufficient in the present work, but a better approxima-
tion of isotropy can be obtained by using more directions, if necessary. For instance, subdividing each face
of the above polyhedron into four smaller triangles leads to a total of 61 directions, whose weights are also
given by Baz̆ant and Oh (1986).
4. Comparison with the experimental data

A large number of viscoelastic branches is likely to be necessary to fit the stress–time curve of a relax-
ation test precisely but, for the sake of simplicity, we will restrict the number of viscoelastic branches to
two. The first one is related to mechanisms inducing short-time relaxation, and the other one defines
long-time relaxation. The long-time relaxation branch will allow to account for a viscous stress that in-
creases with the maximum stretch reached, as can be observed in Fig. 1c, while the short-time relaxation
will provide the hysteresis observed during a loading–unloading cycle (Fig. 1b). Hence, the general rheolog-
ical model introduced in Fig. 4 is simplified with only two viscoelastic branches B1 and B2 in addition to the
hyperelastic branch A. The response of this model is compared below to the experimental data of Section 2.
First, the model parameters are fitted on the stress–strain response to a uniaxial cyclic loading (Fig. 1b).
Then, the ability of the model to reproduce the Mullins induced anisotropy (Fig. 3) is tested.

Application of the model to uniaxial tension is detailed in Appendix A. The material parameters to be
fitted are NA

0 , NB1
0 , N B2

0 , GA, GB1 , GB2 , gB1 , gB2 and a. Our goal here is to catch the main features of the ob-
served material behavior, and especially the anisotropy, with a minimum number of parameters. Hence,
different a values are not considered for branches A, B1 and B2, and N A

0 , NB1
0 and N B2

0 are taken equal.
The remaining seven parameters have been fitted simultaneously on the experimental stress–strain curves
in Fig. 1b, leading to a = 0.4, N A

0 ¼ N B1
0 ¼ NB2

0 ¼ 5, GA = 0.6 MPa, GB1 ¼ 0.4 MPa, GB2 ¼ 2.0 MPa,
gB1 ¼ 20.0 MPa s�1, and gB2 ¼ 0.4 MPa s�1. The curves predicted by the model when using these values
are shown in Fig. 6b and can be compared to the experimental measures repeated in Fig. 6a. The response
of the model displays several typical features of the behavior of filled rubberlike materials: hysteresis, stress
softening after the first cycle, and permanent set. During unloading, the stress decreases more gradually
than in the experimental curve, where a large viscous stress that increases with the maximum stretch applied
to the material (Fig. 1c) relaxes from the very beginning of unloading. A complete study of the stress–time
relaxation behavior would be necessary to account for this characteristic correctly, which is beyond the
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Fig. 7. Anisotropy induced by the Mullins effect: experimental data (a) and model prediction (b).
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Fig. 6. Cyclic uniaxial tension: experimental data (a) and model prediction (b).
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scope of this paper. It has been observed during the fitting procedure that increasing the value of gB1 or gB2

increases the viscous stress, but the relaxation time is increased as well, unfortunately. Finally, it has also
been observed during the fitting procedure that the amount of permanent strain depends strongly on the
damage parameter a.

Thus, the model reproduces reasonably well a non-linear stress–strain response, an hysteresis that is larger
at the first cycle than at the second one, a strain-induced stress softening, and a permanent set. Comparison
with the experimentally observed anisotropy (Fig. 7) shows that the model also catches a large difference be-
tween the two samples presented in Section 2. In agreement with the experimental data, sample 1 behaves
like a material where the Mullins effect is saturated, while sample 2 still presents some Mullins effect at
the first loading, as shown by a higher maximum stress and a large hysteresis at the first cycle. Like in
Fig. 6, where the Mullins effect was not saturated, the stress decrease is too gradual for sample 2. It may also
be noted that the shifts of the unloading and reloading curves of sample 1 are underestimated by the model.
5. Conclusion

Under cyclic loading conditions, filled rubberlike materials present a non-linear visco-hyperelastic
behavior with damage. At the first cycle, the material undergoes a large strain-induced stress softening,
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known as the Mullins effect, with a permanent strain and an induced anisotropy. An experimental proce-
dure has been defined to measure the induced anisotropy. The latter has been demonstrated experimentally.

To reproduce these features, a visco-hyperelastic law based on a damageable generalized Maxwell model
has been proposed. It has been shown to be in agreement with the requirements of thermodynamics, and it
has been applied to a set of material directions that allows to account for initial and induced anisotropies
easily, unlike other existing models.

The model compares favorably with the experiments. It is able to reproduce the main features of uniaxial
cyclic stress–strain curves. In particular, a variation of the amount of hysteresis between the first and second
cycles is obtained, as well as a Mullins strain-induced stress softening, and a permanent set. Moreover, the
model reproduces the characteristics of the Mullins induced anisotropy that have been observed
experimentally.
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Appendix A

In this appendix, application of the model to uniaxial tension is detailed. A uniaxial tension is performed
in direction e1 of a fixed reference frame (e1,e2,e3), and is defined by the stretch history K(t). Since the mate-
rial is assumed isotropic initially, its response will be identical along directions e2 and e3. Therefore, using
the assumed incompressibility (5), the only non-zero components of the deformation gradients are F11 = K,

F 22 ¼ F 33 ¼ 1=
ffiffiffiffi
K
p

, ðF Bk
v Þ11 ¼ KBk

v , ðF Bk
v Þ22 ¼ ðF Bk
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q
, with KBk
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v ¼ K. The Cauchy stress r ¼ 1

det F
F � S � FT can then be obtained

from (6), and the non-zero component applied in the tensile test is given by
rðKÞ ¼ r11 � r22 ¼ 2K2 oWA
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and, using the set of material directions ui introduced in Section 3.2:
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There remains to specify KBk

e in order to obtain r(K). This is done by rewriting the evolution law (9) as
L ¼ LBk
e þ

1

gBk
BBk

e � rBk � ðBBk
e Þ
�1
; ðA:3Þ
where the elastic left Cauchy–Green tensor BBk
e ¼ FBk

e � ðFBk
e Þ

T and the Cauchy stress rBk in branch Bk have
been introduced. For uniaxial tension, this tensorial relation simplifies into
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and leads to
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